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Calculation of the Mutual Diffusion Coefficient by 
Equilibrium and Nonequilibrium Molecular Dynamics I 

J. J. Erpenbeck 2 and J. M. Kincaid 3 

A nonequilibrium molecular dynamics method for the calculation of the mutual 
diffusion coefficient for a mixture of hard spheres is described. The method is 
applied to a 50-50 mixture of equidiameter particles having a mass ratio of 0.1 
for the two species, at a volume of three times close-packing. By extrapolating 
the results to the limit of vanishing concentration gradient and infinite system 
size, we obtain a value in statistical agreement with the result obtained using a 
Green-Kubo molecular dynamics procedure, which is also described. The non- 
equilibrium calculation yields a mutual diffusion coefficient which decreases 
slightly with increasing concentration gradient. The Green-Kubo time- 
correlation function for mutual diffusion displays a slow decay with time, 
qualitatively similar to the long-time tail which has been predicted by the 
hydrodynamic theory of Pomeau. 

KEY WORDS: hard spheres; mixtures; molecular dynamics; Monte Carlo; 
mutual diffusion; time-correlation functions. 

1. I N T R O D U C T I O N  

The study of t ranspor t  phenomena  in fluids from a knowledge of the 

interact ion potent ial  acting between the const i tuent  a toms and  molecules 
has a rich history, dat ing from the work of Bo l t zmann  [1] .  Nonetheless,  
compared  to the s i tuat ion encountered  with the theory of the equi l ibr ium 

equat ion  of state, the calculat ion of t ranspor t  coefficients is far from 
routine,  whether through analyt ic  theory or numerica l  s imulat ion.  The 

source of these complicat ions is found in the nonana ly t i c  behavior  of the 
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transport coefficients in the limit of vanishing density [2], leading to dif- 
ficulties in extending the Boltzmann theory to nonzero density. 

A closely related result in the theory of transport processes is the 
occurrence of the long-time tails of the time correlation functions which 
enter the Green-Kubo formulation of transport coefficients [2]. In that 
approach, one writes the transport coefficient # as 

/~ = lim tlim p(t, N) (1) 
t ~ o O  

#(t, N) = c, dt' p,(t', N) (2) 

&,(t, N ) =  (J , (0)  Ju(t))N (3) 

in terms of the time correlation function pu(t, N). The latter are given 
through the equilibrium ensemble averages, ( ' " ) N ,  of a microscopic 
current J ,  which are known functions of the phase xN= (r N, v N) of the 
system, 

J~,(t) = J p [ x N ( t ) ]  (4) 

where v N = (Vl, v2,..., VN) denotes the velocities of the N particles, and r N = 
(rl, r2 . . . . .  rN) the positions. The displayed dependence of the correlation 
function on N indicates the dependence on the finite size of the system 
rather than any limitation to a fixed N ensemble. The passage to the ther- 
modynamic limit is indicated by tlim in Eq. (1). 

A major difficulty in determining the transport coefficients by the 
Green-Kubo method arises from the slow t -a/2 ( f o r  d=  2- or 3-dimen- 
sional systems) decay of p~(t, N) with time for many transport coefficients 
[3-6], both observed through molecular dynamics experiment and predic- 
ted by theory, instead of the exponential decay predicted by the Boltzmann 
theory. For molecular dynamics calculations of the transport coefficients, 
this circumstance raises the need to obtain the correlation functions at long 
times for which p,(t, N) is dominated by finite-system effects, at least for 
times such that hydrodynamic modes have traversed the system. To delay 
the appearance of these finite-system effects to sufficiently long times can 
require that rather large systems be studied, say, of the order of 4000 par- 
ticles. 

The alternative to the direct calculation of time-correlation functions 
at long times and for large systems is the application of theoretical results 
at these long times. Indeed, the mode-coupling theory has been applied to 
time correlation functions by Ernst et al. [6], who have computed the 
dominant long-time contributions to the correlation functions for self-dif- 
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fusion, shear and bulk viscosity, and thermal conductivity. These results 
are not, however, immediately useful because the theory does not yield an 
estimate for the time at which the long-time tail contributions dominate. 
Thus, one must match the molecular dynamics results to the mode- 
coupling results in order to complete the calculation of the transport 
coefficient. The studies of Erpenbeck and Wood for hard-sphere and hard- 
disk systems [-4], in addition to supporting the validity of the mode- 
coupling results for self-diffusion, also indicate how the theoretical long- 
time contributions can be merged with the molecular dynamics results. 

A number of alternatives to the Green-Kubo calculation have been 
devised, which are generically referred to as nonequilibrium molecular 
dynamics [7]. For the present purposes, it is convenient to classify these as 
either boundary condition methods or constraint methods, even though 
several techniques fit neither of these categories. The boundary-condition 
methods are calculations in which the equations of motion of the system 
contain only the interparticle interactions, just as in equilibrium molecular 
dynamics. At the boundaries, however, work is performed and heat is 
extracted from the system, the effect of which is expected to drive the 
system to a steady-flow state characterized by currents and gradients in the 
desired quantities from which one can compute the transport coefficient. 
The boundary conditions are chosen in such a way that the requisite trans- 
port property is most simply extracted, a procedure entirely analogous to 
that used in laboratory experiments. 

The constraint techniques are considerably less obvious and poten- 
tially of greater power in the study of transport processes. The idea here is 
to modify the equations of motion via external forces in such a way that 
the system will approach a steady state in which a current of the desired 
quantity is achieved and in which gradients in other thermodynamic state 
variables are absent [8]. Indeed, more recent developments [9] proceed in 
a completely homogeneous way, with the system containing no gradients. 
Rather the external forces are used to drive the steady current. One dif- 
ficulty with this approach arises from the lack of uniqueness of the terms 
added to the equation of motion, a circumstance which is, at least 
intuitively, somewhat discomforting. 

The simplest of the boundary-condition methods is perhaps a method 
for self-diffusion [10] in which only the labels attached to the otherwise 
identical particles are changed in such a way as to maintain a steady self- 
diffusion current through the system; aside from labeling, the system is in 
equilibrium and a Green-Kubo calculation and the nonequilibrium 
calculation can be done in the same molecular dynamics calculation. 

The purpose of the present paper is to present a generalization of the 
self-diffusion method to mutual diffusion by permitting the two different 
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hard-sphere species to differ in mass but not in diameter. The systems 
under consideration will then be "isotopic" mixtures. In this paper, we 
describe the method and illustrate its application to a 50-50 mixture of 
heavy and light hard spheres at a single value of the density. We then com- 
pare the resulting mutual diffusion coefficient to the Green-Kubo result, 
which is also detailed here. 

2. SYSTEM AND BOUNDARY CONDITIONS 

The system consists of N hard spheres of diameter a, N1 particles 
having mass ml,  and N 2 = N - N 1  having mass m 2 contained in a cubic 
volume V. The system evolves in time under Newton's equations of motion 
to generate the N-particle trajectory, xN(t), subject to the following boun- 
dary conditions. In the y and z directions, we impose ordinary periodic 
boundary conditions. In the x direction, however, periodic boundary con- 
ditions are modified whenever a particle crosses one of the planes x = vL, 
where v is a signed integer and L is the edge length of the system, L = V~. If 
a particle of species 1 with vx < 0 (as well as all its images) crosses such a 
boundary, then with probability ~1 it is relabeled as a particle of species 2 
and its velocity is rescaled to conserve energy exactly and to rescale linear 
momentum approximately. Similarly, a particle of species 2 with vx > 0 
which crosses one of the planes is changed to a particle of species 1 with 
probability ~2. The result of these changes will be to build up a concen- 
tration gradient, with species 1 concentrating at the left boundary of any 
cell, vL < x <<. (v + 1)L, and species 2 at the right boundary. The details of 
the velocity modifications will appear elsewhere [ 11 ]. It is expected that by 
fixing the probabilities ~1 and ~2, the system should approach with time a 
state of steady diffusion current. 

3. OBSERVATIONS AND DATA ANALYSIS 

The object of our calculation is, of course, the mutual diffusion coef- 
ficient. Macroscopically, if the chemical potential at the position r in the 
fluid is #(r), with gradient Vp(r), and we denote the diffusion current of 
species s by J~(r), then we define the mutual diffusion coefficient D by [12] 

J~(r) = - (p sns /nk  B T)D V/~s(r) (5) 

where we have assumed a steady state and omitted the time as an 
argument. Here Ps and ns are, respectively, the mass and number densities 
of species s, n is the total number density, T is the thermodynamic tem- 
perature, and kB is Boltzmann's constant. Because both species have the 
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same hard-sphere diameter, the chemical potential may be written as the 
sum of an ideal mixing term and a term arising from the hard-sphere 
repulsion, depending only on the total density and the temperature, 

#s(n, T, Xl) = kB Tln xs +/~s(n, T) (6) 

In our calculations, we assume the system to be isothermal so that 

IV#st = (kB T/xs) rs  (7) 

Fs = IVxs/ (8) 

Js = - p s  D r s  (9) 

While thermal diffusion will certainly cause our system to have a non- 
uniform temperature, the expected magnitude of the thermal diffusion coef- 
ficient [11], based on the Enskog theory, would predict quite a small 
deviation from uniformity, in agreement with our observations. 

The present calculations Consist of the observation of the mass density, 
mole fraction, and diffusion current at a sequence of times tl, t2 .... within 
each of P layers of the system defined by equispaced planes normal to the x 
axis between 0 and L, 

Pstp -- (P/V)  ~ mi(t ) Vl[xi(tp)] @~)(tp) (10) 
i 

Xsl p = n s l p / E  rtrl p ( 1 1 ) 
r 

ns~p = (P/V)  Y" U,[xi(tp) ] @s)(tp) (12) 
i 

Jslp = ( P / V )  E mi ( t )  Ui(tp) U,[xi(tp) ] ~5i(s)(/p) ( 1 3 )  
i 

Vt(x) = A(x  - ct) - A (x  - ct+ l) (14) 

where A(x )  is the unit step function, 8i (~) = 1 if particle i is of species s and 
vanishes otherwise, the ct are layer coordinates 

c t = l L / ( P - 1 ) ,  / = 0 ,  1 ..... P - 1  (15) 

and ui is the velocity of particle i relative to the center of mass velocity, 

u,(t) = v,(t) - P ( t ) /M( t )  (16) 

P(t)  = • mi(t ) vi(t) (17) 
i 

M(t )  = ~" mi(t) (18) 
i 

840/7/2-6 
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It should be noted that the mass of a particle mi is a function of the time 
under the current nonequilibrium boundary conditions. 

A value of the mutual diffusion coefficient could, of course, be com- 
puted for each layer and observation time from Eq. (9) by obtaining an 
estimate of Fs from the mole-fraction profile. In fact, this is not the best 
way to analyze our data. Instead, we observe at the outset that the mutual 
diffusion coefficient should have a marked dependence on the density, as 
can be seen from the Enskog theory result (in the first Sonine polynomial 
approximation) [ 13 ], 

1 

PiP 8n f f2Zc  2~mlm2 A 

in which ~o is the pair correlation function at contact for the equilibrium 
state. While the total number density is not found to vary widely in our 
steady-state profile, the denominator p~p is expected to do so. Therefore 
we compute values of the diffusion coefficient scaled by D E l l ] ,  

[)= D/DE[1 ] (20) 

in which the values of the densities which enter the latter are obtained from 
the layer of fluid under consideration and for a particular observation time. 

The frequency with which we make observations of the above quan- 
tities has considerable influence on the correlations which are found 
between the sequential observations of any one of them. In the calculations 
reported here, observations were made at intervals of approximately two 
mean free times. The resulting values were then coarse-grained over a much 
longer time interval (ranging from 80 to 1000 such times) so that the 
resulting set of observation appeared to be serially uncorrelated when sub- 
jected to standard statistical tests [14]. 

While in theory we could determine the reduced diffusion coefficient as 
a function of density by analyzing individual layers, estimates obtained in 
that way are not very precise because of the magnitude of the fluctuations. 
Instead we have averaged our results over a number of layers to obtain an 
effective mutual diffusion coefficient. Because in the end we are interested in 
the limit of vanishing composition gradient, the state approached in the 
extrapolation to this limit is expected to be unique. In practice, we have, 
for the most part, averaged over either the entire cell or the entire cell 
except the two boundary layers. 

4. RESULTS 

The procedure outlined above has been applied for a (initially) 5(~50 
mixture of hard spheres at a volume of three times close-packed, V= 3 V 0, 



Table I. Parameters and Results for the Nonequilibrium Molecular 
Dynamics Calculation of the Mutual Diffusion Coefficient a 

N ~1 ~2 Nc M Nob~ 15(N, F1) F1/a x I 

108 1.00 1.00 1.5 120 116 1.02 • 0.02 0.128 _+ 0.002 0.507__ 0.001 
108 0.80 0.80 3.1 160 175 1.05_+0.03 0.075_0.001 0.514___0.003 
108 0.57 0.57 6.5 1000 59 1.08_+0.03 0.042_+0.001 0.5283_+0.0002 
500 1.00 1.00 2.1 80 42 1.05 + 0.03 0.080 _+ 0.001 0.4624 _+ 0.0005 
500 0.75 0.75 8.0 200 77 1.08 • 0.042_+0.001 0.5262_0.0001 

2048 0.90 1.00 14.1 100 66 1.10 _+ 0.02 0.043 __+ 0.001 0.534 + 0.001 

a N is the number O f particles, ~1 and (2 are the probabilities for modifying the mass for each 
type of boundary crossing, No is the number of collisions, in millions, for the calculation, M 
is the number of time steps (two mean free times each) which are coarsed-grained in forming 
an observation, Nob s is the total number of such observations,/) is the reduced mutual dif- 
fusion coefficient, F~ is the magnitude of the mole-fraction gradient, and xl is the observed 
mole-fraction of the heavy species. 
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Fig. 1. The mutual diffusion coefficient (in units of the 
Enskog value) as a function of the mole-fraction 
gradient for three systems of 108 particles (circles), 500 
particles (triangles), and 2048 particles (square). The 
error bars represent one standard deviation. The three 
values plotted near F 1 =0.05 have been separated 
slightly to perlit the individual error estimates to be dis- 
tinguished. 
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where Vo = 2~Ntr3/2, in which m2 = 0.1ml. The set of six calculations which 
were performed is described in Table I. These comprise three values of the 
total number of particles and as many as three different values for the 
mass-change probabilities ~1 and (2. The numbers M of observation times 
coarse-grained in forming the overall averages are tabulated, as are the 
average values of the mole fraction xl,  its gradient F~, and the reduced 
mutual diffusion coefficient along with their associated statistical uncer- 
tainty (one standard deviation of the mean). The mutual diffusion coef- 
ficient is plotted as a function of the reduced mole-fraction gradient in 
Fig. 1. We observe only a small dependence o f /3  on the concentration 
gradient, decreasing with increasing magnitude of the gradient. The depen- 
dence of the results on the number of particles is evidently small. Using 
linear least squares to extrapolate to vanishing gradient and infinite system 
size, we obtain the estimate 

/}= 1.13+0.03 (21) 

results, in which the uncertainty reflects the range of least-squares 
depending on which terms in 1IN and F are included in the fit. 

5. G R E E N - K U B O  RESULTS 

As a check on the validity of our procedures, we have also evaluated 
the mutual diffusion coefficient using the Green-Kubo approach. This 
calculation is based on Eqs. (1)-(4), with [15] 

Jo(t) = ~ miUxi(t) @1) 
i (22) 

cD = pn/PlP2Pt V 

in which the velocity in the center of mass frame of reference is given in 
Eq. (16). Our calculations are made in the so-called molecular dynamics 
ensemble of fixed N, V, E, and P = 0  using a Monte Carlo-molecular 
dynamics method which has been detailed elsewhere [10]. The calculations 
involve Monte Carlo averaging both over a sequence of Q phases {Xq N, 
q-- 1, 2,..., Q } selected by the ordinary Metropolis technique and over time 
origins defined periodically along the dynamical trajectory generated begin- 
ning with each of the Monte Carlo phase points Xq N. For the purposes of 
obtaining a value for the diffusion coefficient, it is convenient to 
interchange the ensemble average and the time integral in Eqs. (2) and (3), 
so that we compute 

D(t, N) = Co( Jo(O) Go(t)) (23) 
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where 
r t  

Gr)(t) = Jo dr' J o ( t ' )  

= ~, m i Llxi(t ) Oi (I) (24) 
i 

Ar,(t) = ri(t ) - ri(O ) 

Calculations of D(t, N)  as well as the t ime-correlation function po( t )  
have been made for systems of 108, 500, 1372, and 4000 particles. The 
impor tant  parameters  of these calculations are given in Table II. The values 
of the reduced (t ime-dependent)  mutual  diffusion coefficient /3(t*, N), 
evaluated at the longest time t * =  72t 0, where t o is the mean free time, are 
plotted against 1IN in Fig. 2 and are also given in Table II. These are 
evidently consistent with a 1IN linear extrapolation. A linear least-squares 
fit yields 

/3(t*) = 1.14 _+ 0.02 (25) 

To complete the calculation of D, we require the contr ibut ion to the 
integral, Eq. (1), beyond t*. The reduced velocity correlat ion function, 

~(s, N)  = {nto/Vpl p2Dz[1  ] } pD(sto, N)  (26) 

is plotted in Fig. 3 against s -3n  for values of the reduced time between 
s =  8 and s =  30. The mode-coupl ing theory of P o m e a u  [16 ]  predicts a 

Table II. Parameters and Results for 
Green-Kubo Calculation 

of the Mutual Diffusion Coefficient ~ 

N Q Nc /5(s*, N) 

108 60 40.4 1.04 + 0.01 
500 100 51.6 1.08 + 0.02 

1372 79 67.0 1.13 + 0.04 
4000 100 102.9 1.18 -I- 0.06 

a N isthe number of particles, Q is the number 
of trajectories, selected by Metropolis Monte 
Carlo, Arc is the total number of collisions, in 
millions, for all trajectories, and/9(s*, N) is the 
observed mutual diffusion coefficient obtained 
from the integral of the Green-Kubo integrand 
out to a time of 72 mean free times. 
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Fig. 2. The mutual diffusion coefficient (in units of the Enskog 
value) evaluated as the integral of the Green-Kubo time- 
correlation function to a time of s*= 72 mean free times, as a 
function of the number, N, of hard spheres in the system. 

linear dependence on this form at long times. Beyond about  s - -25 ,  the 
statistical uncertainty of the data exceeds the magnitude of the time- 
correlation function. It  is clearly difficult to draw any solid conclusion con- 
cerning the long-time behavior. Nonetheless, we can obtain an estimate by 
assuming a linear s - 3 / 2  dependence beyond, say, s = 22 and fit our data to 
obtain an estimate for the long-time tail. This procedure yields a correction 
to Eq. (25) for long times of A / ) =  0.05 +_ 0.02. This is in contrast to the 
value given using the theoretical coefficient of the long-time tail [16],  
AD=0.01.  Our present treatment of the data is unable to resolve this 
uncertainty. Nonetheless, in view of the strong evidence for the validity of 
mode-coupling theory in the context of the velocity autocorrelation 
function [4] ,  we believe the addition of the contribution from the 
theoretical long-time tail to be entirely reasonable. Thus, we report the 
Green -Kubo  result as 

/)  = 1.15 _+ 0.02 (27) 
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Fig.  3. The  reduces  t i m e - c o r r e l a t i o n  func t ion  for  m u t u a l  dif- 

fus ion as a f u n c t i o n  of  the t ime,  s, in uni t s  o f  the  m e a n  free 

t ime, for  f ou r  different  values  of  the  n u m b e r  of  par t ic les ,  N. 

The  e r r o r  b a r s  are  one  s t a n d a r d  dev ia t ion  a n d  a re  a l m o s t  

i n d e p e n d e n t  of  the time. 

An independent argument for this result rather than the value 1.19_+ 0.04 
suggested by the analysis of the Fig. 3 data must await a more thorough 
comparison between our data and the theory, perhaps using a finite-N ver- 
sion of the theory to extend the comparison to much shorter times, as dis- 
cussed in Ref. 4 for the case of the velocity autocorrelation function. 

6. DISCUSSION 

The apparent agreement between the Green-Kubo and the non- 
equilibrium molecular dynamics calculations supports the validity of our 
nonequilibrium method. A number of points are worth stressing. 

(i) The fact that the nonequilibrium estimate lies below the 
Green-Kubo estimate, coupled with the fact that most of the uncertainty in 
the former estimate is associated with difficulties in taking the limits of 
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large system size and vanishing gradient, is perhaps suggestive of the 
possibility that contributions to the nonequilibrium estimate analogous to 
the long-time tail correction to the Green-Kubo values remain hidden in 
our treatment of the data. 

(ii) The observed dependence of the mutual diffusion coefficient on 
the concentration gradient has not, to our knowledge, been seen 
experimentally. It would be interesting to know whether such an effect 
exists in nature. 

(iii) The present nonequilibrium method shows no measureable 
advantage over the Green-Kubo procedure in determining the mutual dif- 
fusion coefficient. However, our procedure is expected [9] to be far less 
"efficient" in producing values for the transport coefficient than the con- 
straint methods, according to proponents of the latter techniques. The case 
of mutual diffusion may indeed be the optimal choice for a test. 

(iv) The question of the validity of the Pomeau theory [16] of the 
long-time tail has not been seriously addressed in the present work. In view 
of the large statistical uncertainties in the present data for the time- 
correlation function at long times, it will evidently require a finite-system 
version of the theory in order to make the comparison in a time regime 
where the data have sufficient precision. 
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